Comparing and Combining Strong and Weak Motion to Optimize Data Quality
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Abstract Algorithm to combine data Data Matching as a State-of-Health Metric

The two Cascadia data streams provide equivalent measurements of ground motion, for moderate-amplitude signals where
the dynamic ranges of the strong-motion and weak-motion signals overlap. Their ratio should be close to 1, so this ratio can be
monitored to provide a new state-of-health metric. Here we follow a similar methodology to Li et al. (2019). However in this

The accelerometer and seismometer data from the Cascadia 120 Slim PH instrument are aligned and calibrated so as to provide
matching data, typically within 1% after response correction. Therefore they can be used interchangeably, depending on the magnitude
of the signal. However we wish to avoid a discontinuity of even 1% when switching between data streams. Therefore a smooth blending

Co-locating weak-motion seismometers with strong-motion accelerometers enables monitoring of seismicity at
all scales, from the largest earthquakes to background-level microtremors. However, a combined analysis
depends on having comparable data from both instruments, installed at the same depth, accurately aligned in

the same package, and precisely calibrated so they can produce equivalent data, i.e. the same ground motion algorithm is required. case because the strong and weak-motion instruments are integrated we can see more accurate matching of the data.
velocity or acceleration signals after response correction. We recommend time-tapered windowing rather than a purely amplitude-based algorithm, to avoid frequent switching between data If the signal ratio is within defined limits such 95-105%, both instruments can be considered to be working and well
streams which would add distortion. Note the specific parameter values in the algorithm below are only example values and can calibrated. If they do not match, the absolute amplitude of the signals should also be checked, as described below.

We present data from recent earthquake sequences in the Hualien region of Taiwan, captured by dual downhole potentially be further optimized.

sensors (Cascadia Slim Posthole) in the Downhole Seismic Observation Network of Taiwan CWB. In this example
the seismometer and accelerometer signals match within 0.5% on average after response correction, allowing for
the synthesis of a combined data stream with an unprecedented dynamic range of 220 dB. Algorithms for
optimal combination of the data are discussed and demonstrated.

Below are two examples of signal ratio before, during, and after the M7.4 earthquake, taken from the closest station HWAB in
Hualien, and the most distant station LAYB (see map in the lower right section of this poster). The RMS acceleration (in a rolling
] Cascadia strong-motion acceleration response 10 s window) is also shown to indicate how the signals can become mismatched at high and low amplitude extremes. The
Response Correction S— T ] signal ratio metric is valid and close to 1 as long as:
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To combine the dataq, first both data streams must be converted to have the 0

, 1. The signal is not too large, over the clip level of the seismometer (see clipping events at HWAB)
same units and frequency response.

2. The signal is not too small, below the noise floor of the accelerometer (see quiet time before EQ at LAYB)

This processing also enables a new quality assurance metric for calibration accuracy. Previously, it has only been
possible to verify this by running a calibration test procedure, typically no more often than once a year, since the
test process is laborious and interrupts normal data collection. However, in analyzing data from a dual

Converting between velocity and acceleration is straightforward based on

o . Temporary mismatch of signals indicates the signal has gone outside the range of one of the instruments. Permanent
a = dv/dt = iev in frequency domain.

mismatch would indicate one of the instruments is malfunctioning.
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Matching frequency response is more complicated. High frequency poles
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