# Monanometrics

Key Insights Gained from Induced Seismicity Monitoring in North American Shale Plays

Adam Baig, Ben Witten

## Why Monitor?

- How much more can we do to understand the subsurface?
- How can we better mitigate the risks associated induced seismicity?
- How can we form better regulatory controls and communicate to stake holders?





### KEY INSIGHTS FROM INDUCED SEISMIC MONITORING IN CANADA AND THE USA



Understanding the nature of induced seismicity is key to managing it



Ground motions should play a role in regulatory protocols



Recording seismic network controls data usage



Real-time induced seismicity risk management is possible but...



It is important to get event magnitudes right



## INSIGHT 1

## Understanding the nature of induced seismicity is key to managing it



## INDUCED SEISMICITY ATTRIBUTES

- Strong temporal and spatial correlation with HF operations\*
- 2. Follows Gutenberg-Richter frequency-magnitude relationship with b-value ~1
- 3. No baseline seismicity
- 4. Seismicity uncorrelated with frac stage times\*
- 5. Seismicity diminishes within hours or days following operation completion\*
- 6. Presence of positive magnitude events

\*Attributes that do not apply to the waste water disposal-related induced seismicity





### **INDUCED SEISMICITY ACTIVATION MECHANISMS**

#### 1. Stress transfer (fast process)

- Triggered by stress changes due to HF fluid injection
- Critically-stressed optimally-oriented faults

- Seismicity diminishes quickly after the stresses due to HF operations have subsided
- Predominant in HF-induced seismicity





### **INDUCED SEISMICITY ACTIVATION MECHANISMS**

#### 1. Fluid/pressure diffusion (slow process)

- Hydrological link between the hydraulic fractures and fault
- Fault closer and pressurized

- Residual seismicity
- Predominant in WD-induced seismicity





### NOT ALL IS RELATED TO FAULT ACTIVATION

- Not all detected seismicity is fault activation
- High-resolution data potentially changes the interpretation
- Seismicity can be related to activation of secondary fracture networks
- Not capable of producing a large events





**NN** nanometrics

# INSIGHT 2

#### Recording seismic network controls data usage



#### **RECORDING NETWORK GOVERNS DATA USAGE**

|                                        | Public Networks              | Regional<br>(Subscriber) Arrays                   |                                         | Microseismic Arrays                                                 |  |  |
|----------------------------------------|------------------------------|---------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------|--|--|
| Coverage                               | National/state-wide          | Shale play regions                                | Single or multiple pads                 | Single pad                                                          |  |  |
| Station Spacing                        | 10s or 100s of km            | 10s of km                                         | 2-5 km                                  | 10s of m                                                            |  |  |
| Magnitude of<br>completeness (Mc)      | ~M 1.5 to 2.5                | ~M 0.7 to M1.8                                    | ~M -0.3 to 0.7                          | ~M -2.0 to -0.3                                                     |  |  |
| Location Uncertainty                   | 2 to 10s of km               | 500 m to 1.5 km                                   | 80 m to 300 m                           | < 30m                                                               |  |  |
| Instrumentation                        |                              | Geophone                                          |                                         |                                                                     |  |  |
| Purpose relative to induced seismicity | Is there induced seismicity? | Characterize IS and<br>comply with<br>regulations | Actively manage and<br>mitigate IS risk | Estimate effectiveness<br>of stimulation design<br>and well spacing |  |  |
| ex. OGS, Tex<br>USGS, Ohio             | knet,<br>Seis                | Increasing monitorin                              | g resolution and cos                    | t                                                                   |  |  |



#### SEISMIC NETWORK PERFORMANCE COMPARISON



Increasing monitoring resolution and cost



#### LOCATION UNCERTAINTY AND DETECTION SENSITIVITY COMPARISON



# INSIGHT 3

#### It is important to get event magnitudes right



#### MAGNITUDES ARE IMPORTANT AND COMPLICATED

- Single most important source parameter
- Regulatory traffic-light protocols are based on staged magnitude thresholds
- Operational shutdown thresholds examples:
- Ohio (ODNR): M2.5
- Oklahoma (OCC): M3.5
- British Columbia (BCER): M4.0
- Alberta (AER): M4.0
- Magnitude uncertainty is a known earthquake seismology problem

| From USGS ENS <ens@ens.usgs.gov3<br>Subject 2017-01-03 21:52:31 UPDATE</ens@ens.usgs.gov3<br> | ්<br>D: (M7.2) SOUTH OF THE FUI ISLANDS - 19.3 176.1 (16684)                                                                                                                                        |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To dariobaturan@nanometrics.ca                                                                | DF THE FIJI ISLANDS                                                                                                                                                                                 |
| Magnitude                                                                                     | 7.2                                                                                                                                                                                                 |
| Date-Time                                                                                     | 3 Jan 2017 21:52:31 UTC<br>4 Jan 2017 09:52:31 near epicenter<br>3 Jan 2017 16:52:31 standard time in your timezone                                                                                 |
| Location                                                                                      | 19.328S 176.055E                                                                                                                                                                                    |
| Depth                                                                                         | 15 km                                                                                                                                                                                               |
| Distances                                                                                     | 221 km (137 mi) SW of Nadi, Fiji<br>283 km (175 mi) WSW of Suva, Fiji<br>477 km (295 mi) SW of Lambasa, Fiji<br>835 km (517 mi) ESE of Port-Vila, Vanuatu<br>935 km (579 mi) W of Nuku`alofa, Tonga |
| Location Uncertainty                                                                          | Horizontal: 7.6 km; Vertical 4.0 km                                                                                                                                                                 |
| Parameters                                                                                    | Nph = 104; Dmin = 274.0 km; Rmss = 1.26 seconds; Gp = 4<br>Version =                                                                                                                                |

Discrepancy observed in reported magnitudes - Which magnitude is correct?

| Earthquake (time)   | NRCan          | Calibrated     | USGS NEIC | Spectral               | PGC                |
|---------------------|----------------|----------------|-----------|------------------------|--------------------|
|                     | M <sub>L</sub> | M <sub>L</sub> | mb        | Fitting M <sub>w</sub> | RMT M <sub>w</sub> |
| 23/01/2015 06:49:19 | 4.4            | 3.9            | 3.9       | 4.0                    | 3.7                |

### WHY DON'T MAGNITUDES AGREE AND WHAT TO DO ABOUT IT?



**NN** nanometrics

## INSIGHT 4

#### Ground motions should play a role in regulatory protocols



#### **GROUND MOTIONS - IMPORTANCE AND CURRENT USE**

- Magnitudes do not tell the whole story
- "Not every M5.0 has the same impact"
- Measure effect or impact of earthquakes on sites of interest
- Used for evaluation of seismic hazard and design spectrum in building codes
- Related to shaking perception and damage estimates





| SHAKING                   |       | vveak | Ligni | Vonclight  | Strong | Very strong | Severe<br>Med /Leaury | Violent | Extreme    |
|---------------------------|-------|-------|-------|------------|--------|-------------|-----------------------|---------|------------|
| DAMAGE                    | none  | none  | none  | very light | Light  | wooerate    | wou./neavy            | пеачу   | very Heavy |
| PEAK ACC.(%g)             | <0.05 | 0.3   | 2.8   | 6.2        | 12     | 22          | 40                    | 75      | >139       |
| PEAK VEL.(cm/s)           | <0.02 | 0.1   | 1.4   | 4.7        | 9.6    | 20          | 41                    | 86      | >178       |
| INSTRUMENTAL<br>INTENSITY | I     | -     | IV    | V          | VI     | VII         | VIII                  | IX      | X+         |

#### **GROUND MOTIONS - USE IN REGULATIONS**

#### **British Columbia (BCER)**

- Single accelerometer within 3 km of active well
- Reporting threshold: 0.008 g (peak ground acceleration)
- Ground motion data not used to drive a traffic light protocol (TLP)
- Used to calibrate attenuation models where the seismic hazard is the highest





#### **GROUND MOTIONS - USE IN REGULATIONS**

#### Role of ground motions in traffic light protocols?

- Potentially combine with magnitudes to relate threshold to earthquake impact
- What threshold should be used?
- How far from the epicenter?
- Recorded or predicted?





## **INSIGHT5**

Real-time induced seismicity risk management is possible but...



### **REAL-TIME IS RISK MITIGATION**

- O&G-related induced seismicity regions in North America are known
- Relatively unique conditions at each IS-susceptible pad:
  - Fault network size and type
  - Fault orientation relative to the well(s) and regional stress field
  - Stress state
  - Proximity to the well(s)
  - Completion and stimulation design
  - Activation mechanism
- One operator mitigation approach will not work for all
- How do we measure its effectiveness?
- Real-time feedback loop required





#### **IS RISK MANAGEMENT APPROACH - KEY COMPONENTS**



### **REAL-TIME RISK MITIGATION REQUIREMENTS**

- Published models for induced seismicity forecasting
- Generated using research-grade data sets
- To use forecasting in practice, need to be able to produce:
  - Fast
  - Accurate Seismic catalogs (lower uncertainty)
  - Complete
- Real-time risk treatment systems are a work in progress BUT
  - High resolution monitoring required
  - Mc well below M0.5
  - High event location accuracy
  - Accurate catalogue level data products
  - Can Al get us sufficient real-time quality?









AN nanometrics

#### **KEY TAKEAWAYS**

- Seismicity has close temporal and spatial correlation to HF operations not the case with water disposal
- Multiple activation mechanisms observed and high variability in seismic risk
- Data interpretation often changes with monitoring resolution
- Public and private arrays play a complementary role
  - Role for government (regulators), academia, service providers and operators
- All North American traffic light protocols (TLPs) are magnitude-based
  - Standardize magnitude approach to reduce uncertainty
- IS ground motions can potentially enhance TLPs
  - Related to earthquake impact
  - Careful with implementation
- Real-time risk management by operators is possible but...
  - It requires high-resolution monitoring and real-time feedback loop



## Contact

Website: nanometrics.ca

email: adambaig@nanometrics.ca benwitten@nanometrics.ca



# THANK YOU

QUESTIONS? Stop by Booth #501

ANN nanometrics