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Practical management of induced seismicity risk and 
effective mitigation approaches are crucial to oil 

and gas operations. Effective risk management procedures benefit from 
an accurate forecast of the largest potential magnitude event in near 
real-time, allowing the adjustment of operational parameters to reduce 
the probability of a felt or damaging event. Many models have been 
proposed to estimate the magnitude of the strongest possible event. 
Some of these models rely solely on statistics of recorded seismicity 
while others account for the relation of event size with operational 
parameters. There are also models that relate the maximum magnitude 
with existing geological and tectonic conditions. 

In this study, we discuss different published seismicity forecasting models 
and evaluate their performance on a number of datasets. To understand 
the reliability of the various models and their sensitivity to data quality, we 
compare observed and forecasted seismicity for local and regional arrays. 
The results show that a high-quality catalog is essential to accurately 
forecast seismicity and drive a reliable risk management application.

Next, we evaluate the forecasting models by playing back 30+ datasets 
that were generated during hydraulic fracturing operations to simulate 
real-time monitoring conditions. We use three prediction models to 
estimate the maximum magnitude and one to evaluate the number of 
events stronger than a threshold magnitude. Our findings show that, in 
general, maximum magnitude estimates from different models are nearly 
identical and in good agreement with the observed seismicity. We also 
discuss the limitation of the models by examining a few cases where the 
seismicity forecasts were not successful. Finally, we show that over time, 
the forecasts lose their sensitivity to the injection volume.

Introduction
Stress changes due to subsurface fluid injection in oil and gas operations 
may induce seismic activity. The size and distribution of such events 
are a function of local geology, in situ stress conditions, and treatment 
parameters. Not all fluid injection operations exhibit seismicity (Shultz  
et al., 2018), but when they do, it is vital to monitor the ongoing induced 
seismic activity evaluation of the invoked risk mitigation plans.

The majority of the regulatory traffic light protocols introduced to date 
are based on staged magnitude thresholds, which increases the need 
for a better estimation of the largest magnitude event that is related to 
oil and gas production. Forecasting maximum magnitude in real-time is 

a subject of significant interest to many operators. Prior knowledge of 
the largest possible event in real-time allows operators to optimize and 
adjust their stimulation plans accordingly to prevent events that would 
trigger regulation-driven operational shutdowns.

A large body of work has been published on forecasting maximum 
magnitude (Mmax) related to fluid injection in a given area. The perfor-
mance of these models has been assessed in several studies (Eaton and 
Igonin 2018. Shultz et al., 2018, Kiraly-Poag et al. 2016) using available 
datasets to identify the benefits and challenges of each method. 

Shapiro et al. (2010) introduce a parameter called ‘seismogenic index’ 
which represents the tectonic feature of a given location and is indepen-
dent of injection parameters. Using this index, cumulative injected volume, 
and an estimated b-value, one can calculate the number of events within 
a specific magnitude range and consequently determine the probability 
of events occurring that have a magnitude larger than the threshold 
magnitude that results during fluid injection (referred to hereinafter as 
SH10). The result from this method is valid during active fluid injection.

Shapiro et al. (2011) state that the minimum principal stress axis of the 
fluid-stimulated rock volume is one of the main factors limiting the 
probability of large magnitude events. This model essentially relates the 
fluid-injected Mmax with geometrical characteristics of the stimulated 
volume (i.e., the microseismic cloud). This method suggests real-time 
monitoring of the spatial growth of seismicity during rock stimulation to 
estimate expected Mmax and consequently to mitigate the seismicity risk. 

McGarr (2014) develops a simple relationship between the cumulative 
volume of injected fluid and the largest seismic moment. This model 
is developed based on some assumptions, including a fully saturated, 
brittle rock mass with a b-value of 1.0. 

Van Der Elst et al. (2016) demonstrate that the size of the strongest 
events from seismic activities related to fluid injection is consistent 
with the sampling statistics of the Gutenberg-Richter distribution for 
tectonic events. They conclude that injection controls the nucleation but 
that earthquake magnitude is controlled by tectonic processes. They 
introduce a model based on this hypothesis (referred to hereinafter as 
VDE16Seis). They further link their model to total injected volume and 
seismogenic index (referred to hereinafter as VDE16SI-V). 

Eaton and Igonin (2018) add a tapered Gutenberg-Richter relationship to 
VDE16Seis, to introduce a limit to the size of the maximum magnitude event. 
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In this paper, we calculate the seismicity for regular time intervals (e.g., 
Kiraly-Proag et al. (2016)) utilizing the SH10, VDE16Seis and VDE16SI-V models 
to illustrate how well the techniques forecast Mmax and the number of 
events in near real-time based on recorded seismicity and treatment 
data. Other than the three models used in this study, we investigated 
three other published methods and decided not to utilize them in the 
forecasts. Shapiro et al. (2011) do not account for the far-field triggering 
due to poroelastic stress effect and neglect nucleation of an event in the 
stimulated volume while the fault continues out of the events cloud. Our 
analyses show that McGarr (2014) overestimates Mmax compared to the 
observations. Furthermore, this model is developed based on assump-
tions including a constant b-value of 1. Eaton and Igonin (2018) limit upper 
magnitude level in the real-time application, which we did not prefer.

In order to improve the practicality of seismicity forecasts, all observa-
tions and estimations are presented in an interactive dashboard 
environment with the objective of providing effective real-time 
operational risk mitigation feedback.

Case Studies
While not shown in this paper, we test the dashboard on 30+ datasets 
from hydraulic fracture (HF) operations. In general, there was a very good 

agreement between observations and estimations across the various 
datasets. The following three case studies highlight a key common point 
that was observed in each playback. The case studies are related to three 
HF monitoring operations in Western Canada. 

Case Study I illustrates how the models result in seismicity estimations 
that are very close to the observations. The results from this case study 
are typical and represent the majority of the playback datasets where 
a rich and accurate catalog was collected using either a local array 
or a near-regional network with advanced processing. Case Study II 
demonstrates the impact of treatment data in the forecasts. Lastly, Case 
Study III demonstrates a limitation of the algorithms. We summarize 
results for each dataset in a dashboard environment.

Case Study I uses data acquired during a 36-day monitoring period 
from an 11-station local surface-monitoring array located in Alberta. All 
stations were located within 8 km of the pad. The array recorded 2374 
events during the monitoring period, with local magnitudes ranging from 
ML-1.1 to ML2.6. The b-value computed for the entire catalog was 0.9, 
which is consistent with the Gutenberg-Richter relationship for natural 
seismicity with the magnitude of completeness (Mc) of ML-0.6.

Figure 1 is the dashboard for Case Study I. Figure 1a shows the 
Gutenberg-Richter distribution on top and the normalized probability 

Continued on Page 20

Figure 1. Dashboard for Case Study I. (a) Top: Gutenberg-Richter distribution for entire catalog, Bottom: Normalized probability density function from SH10 (green line) and 
VDE16Seis (blue line). The blue dashed line shows the mode and gray dotted lines denote 90% confidence bounds of the VDE16Seis distribution (b) Forecasting gauges (c) 3D 
view of event distribution, (d) Temporal variation of recorded and estimated seismicity. Top: Recorded Mmax (red squares), estimated Mmax using SH10, VDE16Seis and VDE16SI-V 
(green dark and light blue lines respectively), and the 90% confidence bounds of the VDE16Seis estimations (shaded gray area). Middle: Number of recorded events larger than 
ML-0.5 (red squares) and the estimated values using SH10 (green line). Bottom: b-value (orange squares) and Mc estimations (green squares).
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regional array detected and located 80 events in the same time period 
that had poor location accuracy in comparison with the locations from 
the local network (Case Study I). The completeness and accuracy of this 
catalog is not sufficient for statistical analysis and would result in large 
probabilistic prediction uncertainties. 

This example emphasizes that a research-grade catalog is an essential 
requirement for driving a reliable risk management application. A local or 
near-regional seismic monitoring resolution along with advanced seismic 
data processing techniques is required to generate data sets that are 
both rich enough and accurate enough to be used as inputs in real-time 

Figure 3. Dashboard for Case Study II. (see the caption of Figure 1 for the description of each panel). (d) The orange line in the middle plot shows the cumulative injection volume.

density function from SH10 (green line) and VDE16Seis (blue line) on the 
bottom. The vertical dashed line is the mode of the VDE16Seis probability 
density function and the dotted lines denote 90% confidence bounds 
of the distribution. Figure 1b illustrates the forecasted Mmax gauge on 
top and the probability of exceeding magnitude ML2.5 gauge on the 
bottom. The 3D events distribution is displayed in Figure 1c. 

To simulate real-time monitoring, we play back the data and calculate the 
b-value and Mc at regular time intervals from the cumulative seismicity 
data. We use these parameters to estimate the expected Mmax and the 
number of events that exceed a threshold magnitude at each time step 
and compare them to the recorded seismicity. It should be noted that the 
estimated Mmax is the mode of the probability density function (Figure 
1a). The symbols in Figures 1d show results at 12-hour intervals over 
the stimulation period. On the top plot, the recorded (red squares) and 
estimated Mmax (green and blue lines) are shown over time. The middle 
plot presents the recorded number of events that are larger than the 
threshold magnitude of ML-0.5. The bottom plot in Figure 1d shows the 
time-varying estimation of b-value and Mc. As more events are detected, 
the Mc and b-value become more stable. In this example, we observe a 
very good agreement between the recorded and estimated seismicity 
including Mmax and the number of events.

Next, we examine the impact of the seismic catalog quality on the risk 
management application. This dataset was recorded by a 20-station 
regional backbone array around the well pad from Case Study I. The 
location of the stations ranged from 3 km to 72 km from the pad. The 

Figure 2. Event locations from the 20-station backbone network from the same 
time period shown in Figure 1.
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the lack of correlation between the cumulative injected volume and the 
observed seismicity.

Case Study III demonstrates one of the main limitations of the forecasting 
models. The dataset is from a 4-station local induced seismicity 
monitoring array of a hydraulic fracturing operation over a 2-year period 
near Crooked Lake, Alberta. Figure 5 illustrates the seismicity and 
statistical analysis of this data set over 50 days when the seismic activity 
was highest. The analysis was performed on 12-hour intervals. The final 
results show a good agreement between the expected and recorded 
Mmax with a b-value of 0.69 from a well-behaved Gutenberg-Richter 
distribution. However, a closer look at the time when the strongest event 
happened shows that the models were not successful in forecasting the 
large event which occurred early in operation.

Figure 6a is a snapshot of the seismicity related to the first few days 
after starting injection when 85 events were recorded. The estimated 
b-value from the available data is 0.97. Using the recorded seismicity 
catalog, the models predicted that the maximum magnitude interval with 
90% confidence should fall between ML2.0 to ML3.9. The mode of the 
maximum magnitude probability density function is ML2.5; six hours later 
an event with ML4.5 occurred. Figure 6b shows the seismicity after the 
ML4.5 event. The forecasting result prior to this event shows a very small 
likelihood (1.15%) for the occurrence of such a large event. 

This example highlights the limitation of forecasting models using 
statistical approaches when a large event occurs early in the operation. 
The sample size hypothesis holds that each event in the sequence has 
the same probability of occurrence and that the order of occurrence 
of the largest earthquake is random within the sequence (Van Der 
Elst et al. (2016)). In other words, induced earthquake magnitudes are 
drawn independently from a Gutenberg-Richter distribution rather 
than being physically determined by increasing injection volumes. 
As a result, the large event can occur anywhere within the sequence, 
including at the beginning.

Discussions and Conclusion
Induced seismicity risk can be evaluated prior to drilling by detailed 
geological and geophysical analysis of seismic data to characterize the 

seismicity forecasting models. However, to accurately compute catalog-
level data products (such as b-value or seismicity rate variations), the 
seismicity catalog must be extended with small magnitude events that 
are well below the regulation threshold. Additionally, the event locations 
should be highly accurate in order to enable the delineation of activated 
structures.

We next investigate the impact of cumulative injection volume data on 
the forecasted seismicity parameters. We discover that estimations of 
maximum magnitude and the number of events lose their sensitivity to 
the variation of cumulative injection volume over time. Following Kiraly-
Proag et al. (2016), we reevaluate b-value, Mc and seismogenic index 
in every time step, taking into account the cumulative injection volume 
and the cumulative recorded seismicity from the current time. Then 
these parameters and the designed cumulative injection volume data 
from the next time step are used to forecast the seismicity. The relation-
ship between Mmax and cumulative volume can be seen in the form of 
equation 1:

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	~	 log
𝐶𝐶𝐶𝐶𝑀𝑀_𝑉𝑉𝑉𝑉𝑉𝑉0
𝐶𝐶𝐶𝐶𝑀𝑀_𝑉𝑉𝑉𝑉𝑉𝑉1

	                   (1) 

As cumulative injection volume grows in time, the logarithm of the ratio 
of current cumulative injection volume to the cumulative injection volume 
at the next time step reduces, and as a result, the Mmax estimation is not 
very sensitive to changes in the total injection volume. 

Case Study II illustrates the impact of cumulative injected volume on the 
forecasts. It consists of data that was recorded on a 9-surface-station 
local network acquired over a 45-day period. In addition, there are 68 
shallow borehole sensors that recorded for four days. In total, 7778 events 
are in the catalog with magnitudes ranging from ML-0.9 to ML3.2. To test 
the impact of cumulative volume data on the estimated seismicity, we 
reevaluate all parameters with and without considering the real cumula-
tive injection volume. Figure 3 shows the dashboard for Case Study II. 
Figure 3d presents the observations and forecasts over time when we 
include the real cumulative injection volume (orange line in the middle 
panel). Figure 4 shows the forecast values using a constant injection rate. 
A comparison of the estimated maximum magnitudes and the number of 
events from Figure 3d and Figure 4 demonstrates the limited impact that 
injection volume data has on the forecasts. Additionally, it demonstrates 

Figure 4. Dashboard for Case Study II. (see the caption of Figure 1d for the description of each plot). The orange line in the middle panel shows the constant increasing 
injection volume rate.
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 •  The cumulative injection volume has low to no impact on forecasted 
seismicity, and over time, the forecasts lose their sensitivity to the 
cumulative injection volume.

 •  We observe some scenarios in which a strong event occurred in early 
stages of the HF operations, resulting in under-prediction of Mmax.

 •  The quality of the seismicity catalog has a significant effect on 
the outcome of the forecasting model. A high-resolution data set 
recorded by either a local array or a near-regional network with 
advanced processing is a requirement for this analysis. 

 •  It is worth noting that the three forecasting models used in this study 
were developed based on moment magnitude. Consequently, prior 
to applying the models, the seismicity catalog should be homoge-
nized by converting all magnitude types to moment magnitude.

The seismicity forecasting models are presented as a dashboard in this 
study which can provide operators a measure of whether the current 
injection parameters may cause a strong event in near real-time. This is 
the first version of the dashboard. Hence, adjustments to the displayed 
parameters and the forecasting models are expected in the near future. 
The value and accuracy of predictions will improve with time and contin-
uous feedback from operational use.

pre-existing structures and potential fluid pathways to those structures. 
Drilling and completion programs can then be designed to minimize 
the likelihood of proximal faults activation and large magnitude event 
occurrence. However, as the data recorded to date in Western Canada 
has shown, most of the activated faults are unmapped and the conditions 
(in situ stress state, fault proximity, area, and fault orientation) at each 
pad are highly variable. This is witnessed by the observation of different 
activation mechanisms and the presence of, in some cases, seismicity 
that is not associated with known faults. These observations highlight the 
importance of real-time seismic monitoring in understanding, evaluating, 
and managing the seismic risk in near real-time.

In this study, we evaluate the performance of the approach proposed 
by Shapiro et al. (2010) and two models from Van Der Elst et al. (2016) for 
estimation of Mmax and number of events. The results from our analysis 
were presented in dashboard format as part of a real-time feedback loop 
to the operational risk mitigation protocols.

The summary of our observations is as follows:

 •  Our analysis confirms that the estimated seismicity from different 
models agrees well with the observed seismicity in terms of largest 
magnitude and recorded events in most cases.

 •  We observe that the estimated maximum magnitude from three 
models are very close in all test cases.

Figure 5. Dashboard for Case Study III. (see the caption of Figure 1 for the description of each panel). The Gutenberg-Richter plot and maximum magnitude probability 
distribution plots are shown for the entire catalog. 



    DECEMBER 2018    CSEG RECORDER 23

Acknowledgments
We are grateful to our colleagues at Nanometrics Inc. for their 
support and contribution to this study. In particular, we would 
like to thank Andrew Reynen, Ben Witten, Emrah Yenier and 
Christine Cowtan. We would like to acknowledge Repsol and two 
anonymous operators for granting permission to publish on data 
obtained from their local networks.
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magnitude ML4.5 (b) after recording ML4.5.
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