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Summary 

We address the problem of designing a seismic network for monitoring induced seismic events that 
must meet specific performance criteria.  We propose a method to assess a fundamental measure of 
performance without an earthquake catalogue: magnitude of completeness.  The method is based 
on the site noise, instrument noise, and station distribution and can be used to model existing or 
hypothetical networks.  We use the method to predict the performance of a seismic network 
installed in the vicinity of the New Madrid seismic zone.  Using the catalogue of over 2000 events, 
we estimate the spatially varying magnitude of completeness for the earthquake catalogue using 
maximum curvature method.  The observed magnitude of completeness is compared to the 
predicted value.   A bootstrap sampling method is used to obtain a measure of uncertainty in the 
magnitude of completeness estimate.  We find that predicted magnitude of completeness agrees 
reasonably well with the observed magnitude of completeness, though the observed magnitude of 
completeness tends to be slightly lower than the predicted result. 

Introduction 

In the past decades, induced seismicity has grown from little more than a myth to a well established 
scientific field.  Despite the many advances made in the field, when it comes to designing networks 
for induced seismicity monitoring, station locations are chosen rather arbitrarily.  Network 
performance is evaluated a posteriori, and if necessary a few more stations are added.  This 
approach is impractical in a number of applications, but particularly for induced seismicity 
monitoring in which specific performance standards must be met even if no event is ever detected. 
 
We propose a method to assess network performance of a hypothetical network.  Station locations 
can be chosen according to the best compromise between minimizing site noise, improving 
azimuthal coverage, and increasing station density.  For a hypothetical network we are able to assess 
a fundamental measure of network performance: magnitude of completeness.  Our method allows 
for objective comparison of different network designs prior to station deployment and assessment of 
network performance to ensure that monitoring criteria are met. 
 
We consider a case study with a catalogue of over 2000 events.  Detailed records of seismic activity 
in the New Madrid Seismic Zone date back to 1974.   For our purposes, we consider observed 
seismicity since 2002.   This time period was chosen since there are relatively few station additions 
and equipment changes that are likely to strongly influence magnitude of completeness.  We test 
the predictive seismic network performance modeling technique against the real earthquake 
catalogue.  Spatially varying predicted magnitude of completeness is compared to values observed 
from an earthquake catalogue.   In this study we will describe magnitude of completeness using just 
a single parameter estimating the location of the knee of the frequency magnitude distribution.  
(Some previous studies, e.g.  Ogata and Katsura, 1993, have also included a parameter describing 
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the confidence level.   This allows for definitions of magnitude of completeness based on probability 
of detection, but we did not think it was vital for this study.  See the discussion section for details.) 

Methodology 

Our method for predicting network performance relies on three essential ingredients: the first is site 
noise.  We map the site noise using data from existing stations and/or from a temporary deployment 
of a site noise survey network.  A power spectral density probability density function (McNamara and 
Buland, 2004) is computed for the available stations through an SQLX analysis.  We then interpolate 
between stations and extrapolate outside the polygon that bounds them.  A second ingredient is the 
station distribution.  Locations of existing and hypothetical stations to be included are specified by 
latitude and longitude.  Instrument self noise is constructed from models of published seismometer 
and digitizer self-noise specifications.  Instrument noise is then summed with site noise to obtain the 
station noise for each sensor in the network.  The third key ingredient is a one-dimensional velocity 
model, including estimates of the errors of layer velocity and layer boundary depth, as well as a local 
attenuation factor, Q.  The velocity model plays an important role in determining the expected 
observed spectra of events. 
 
Magnitude of completeness then is estimated by computing the minimum detectible magnitude at 
each station for an event occurring at each point on a grid.  The minimum detectible magnitude is 
determined by successively computing the signal-to-noise ratio (SNR) for different event magnitudes 
and requiring a minimum SNR threshold to be met.  This minimum SNR threshold should be chosen 
to realistically estimate the minimum SNR required for the chosen event detection method, (e.g.  
STA/LTA triggering) but for an initial analysis we set it to 10.  Event spectra are estimated according 
to Brune (1970) with an additional factor to account for attenuation (Ackerley, 2012; Stabile et al, 
2013).   
 
The second component of this study is the verification of the predicted network performance using 
the observed catalogue.  We divide our region of interest into a grid (the finer the grid the better, 
see discussion section).  All earthquakes within a given grid square are taken to make up the 
earthquake catalogue for that square.  We require a minimum of 50 events in each grid square for 
the result to be considered reliable (Woessner and Wiemer, 2005 suggest 200, but in the interest of 
including more points of comparison we chose to lower this threshold).   
 
We now compute magnitude of completeness for the grid squares meeting the minimum number of 
events requirement.  Woessner and Wiemer (2005) compare a number of different techniques for 
estimating the magnitude of completeness from an earthquake catalogue.  We use the maximum 
curvature method (Wiemer and Wyss, 200) which calculates the maximum of the first derivative of 
the frequency magnitude distribution.  We apply a bootstrap sampling method and average the 
magnitude of completeness over 200 bootstrap samples (Woessner and Wiemer, 2005).  This yields 
a stable estimate of magnitude of completeness and a measure of the uncertainty of the result. 
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Case Study  
 
The New Madrid Seismic Zones consists of a mix of L28 sensors and Trillium 120 postholes.  Figure 1 
plots the catalogue of events and the distribution of stations in the network.  The catalogue consists 
mostly of events clustered around the several known faults of the region.  Figure 2 plots the base 10 
logarithm of the number of events observed in each grid square.  This can be thought of as a relative 
measure of the seismicity rate.  Figure 3 plots the frequency magnitude distribution for an example 
grid square.  Though just one example is shown, most of the data follow a similarly typical 
distribution.  The number of stations available for processing has remained relatively constant for the 
duration, with the exception of a couple of minor changes to location or equipment at certain 
stations.  These changes did not significantly influence magnitude of completeness for the network 
so temporal variations in magnitude of completeness due to increased data availability should not 
be a concern. 
 

 
 
Figure 1 Scatter plot of the earthquake catalogue and the distribution of the seismic stations. 
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Figure 2 Plot of the base 10 logarithm of the number of events in each grid square. 
 

 
 

Figure 3 Typical frequency magnitude distribution for the grid square with its northwest corner at 40 
km north, 20 km east.  For this particular grid square Bootstrap sampling yielded a magnitude of 
completeness of 1.48. 
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We apply the methods discussed above to compute the predicted and observed magnitude of 
completeness for the network.  The predicted magnitude of completeness for the region is plotted 
in figure 4.  We observe that magnitude of completeness is fairly consistent throughout the regions 
of highest station density, with slight variations due to site noise and station spacing.  Magnitude of 
completeness within the centre of array is typically between 1.0 and 2.0, rising toward the edges of 
the network. 
 
The observed magnitude of completeness from the maximum curvature method yields results similar 
to the predicted performance, but consistently higher (their difference is plotted in figure 6) by 
about 0.3 magnitude units on average and with slightly less spatial variation.  The maximum 
curvature method reports magnitude of completeness near 1.5 (figure 5).  In contrast, the observed 
magnitude of completeness is between 1.0 and 1.5; unsurprisingly it is lowest near the centre of the 
network.  We do not assess the magnitude of completeness in regions with insufficient events in the 
catalogue as the results are less reliable.  The average difference is between the two methods is 
approximately 0.3 magnitude units. 
 
 

 
Figure 4 Predicted magnitude of completeness for the network.  Typical values are between 1.0 and 
2.0. 
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Figure 5 Observed magnitude of completeness computed according to the maximum curvature 
method with bootstrap sampling of the catalogue. 

 
Figure 6 Difference between the observed magnitude of completeness from the maximum 
curvature method and the predicted magnitude of completeness. The observed result is consistently 
higher than the predicted value. 
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Discussion 
 
We have noted that the observed magnitude of completeness differs from the predicted result, so 
what are the potential sources of discrepancy.  First, it is well known that the maximum curvature 
method tends to underestimate magnitude of completeness (e.g.  Woessner and Wiemer, 2005 
suggest a correction of 0.2 for the method; we expect this correction to vary depending on array 
configuration and tectonic setting).  How much it does so depends on the shape of the ‘roll-off’ in 
the frequency magnitude distribution.  We do not think that this is an issue for this catalogue 
because the observed frequency magnitude distributions all had pronounced ‘knees’.   However this 
is often not the case and in some catalogues we expect this to be a significant factor.   The variability 
in the width of the roll-off provides the motivation to add a shape parameter to the estimate of 
magnitude of completeness.  For example Ogata and Katsura (1993) fit a frequency magnitude 
distribution with 3 parameters, two of which are related to the magnitude of completeness: µ, the 
magnitude at which 50% of events are detected, and σ, a measure of the range in which magnitudes 
are sometimes detected.  It is defined so that at µ+σ 84% of events are detected while at µ+2σ, 
97.5% of events would be detected.  Magnitude of completeness is then subject to a confidence 
level.  At what confidence level should magnitude of completeness be set? Is it the magnitude at 
which 90% of events are detected? Or is it in fact 50% or 99%?  Depending on your definition you 
may get significantly different results. 
 
Another possibility is that our predictive method is not tuned perfectly.  The predicted magnitude of 
completeness value depends on a number of variables including the velocity model, attenuation, 
site noise, and a specified minimum signal to noise ratio (SNR) for detection.  All of these could 
contribute to the discrepancies.  In particular tuning of the signal to noise ratio has a potentially 
dramatic effect on predicted magnitude of completeness.  Our initial assumption is that 10 dB of 
signal to noise is needed for detection after optimal filtering.  In figure 7 we plot two signals, one 
with 13 dB SNR, the other with 10 dB.  Can one of these signals be detected and the other not?  
Every 3 dB of SNR corresponds to approximately 0.1 magnitude units difference in magnitude of 
completeness.  Further work needs to be done to properly tune these parameters and to investigate 
more closely the effect that they can have on the result.   
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Figure 7 The event in red has 13 dB of signal-to-noise while the event in orange only has 10.  The 
red event is magnitude 1.0 and orange 0.9.  Every 3 dB of SNR corresponds to a difference of 
approximately 0.1 magnitude units in detection threshold. 
 
 
Another potential error source lies in the geographical discretization of magnitude of completeness.  
The observed magnitude of completeness is assessed for the entire grid square.  If the distribution 
of events in a grid square is clustered to one corner then the observed magnitude of completeness 
will be reflective of this corner rather than the centre of the grid square where the predicted result is 
calculated.  This effect can be mitigated by reducing the grid size, but this comes at the cost of 
reducing the number of events in each grid square and thus the number of squares for which the 
catalogue is sufficient to estimate magnitude of completeness reliably.  As the catalogue grows (at a 
rate of roughly 1000 events per month), this will become less of an obstacle and we will be able to 
use a finer grid more reliably.  Further attention should also be given to investigating methods of 
computing magnitude of completeness from a catalogue that become stable for fewer events so 
that the requirement of 100 events in a grid square can be relaxed. 
 
As a closing thought it is interesting to consider in more detail the motivation for predictive methods 
in general for induced seismicity.  It stems from a fundamental difference between induced and 
natural seismicity: induced seismicity can, at least in some instances, be controlled.  Natural 
seismicity is going to occur one way or another no matter what we do, however we can take action 
to mitigate the hazard from induced seismicity.  It may be as easy as flicking off a switch to remove 
the external stimulus, be it hydro-fracturing, waste water injection, CO2 sequestration, or another 
injection operation.  This is why network design is of critical importance in induced seismicity.  We 
need to be able to detect and accurately locate events, but we must also eliminate false negative 
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results.  Thus we need to know what events we can and can’t see from day one of operations.  For 
this reason accurate predictions of network performance are of utmost importance in induced 
seismicity applications. 

Conclusions 

The predicted and observed magnitudes of completeness agree well across most of the grid squares 
in which there were sufficient data to reliably estimate magnitude of completeness.  Thus we 
conclude that the proposed method to estimate magnitude of completeness is sound though 
continued efforts are needed to eliminate tuning of parameters such as the minimum signal-to-noise 
ratio.  The method provides an objective measure of performance that can be used to compare 
different networks, existing or hypothetical and to ensure that monitoring criteria are satisfied.   
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